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Kaluza-Klein Theory and Dirac Equation in Higher 
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The higher dimensional Kaluza-Klein theory in Riemann-Cartan space is 
discussed. To clarify its implications, we investigate the simplest five-dimensional 
case of the theory in detail. The Einstein-like, Maxwell, and Dirac equations in 
four-dimensional space-time are obtained by reducing the corresponding five- 
dimensional field equations. The effect of spin-spin interaction induced by torsion 
is revealed by analyzing the Dirac equation in this case. 

1. I N T R O D U C T I O N  

It is well known that all kinds of elementary particles can be classified 
by means of  irreducible representations of  the Poincar6 group and can be 
labeled by mass and spin. Mass and spin are elementary notions, each with 
an analogous standing not reducible to the other. General relativity based on 
the torsion-free Riemann space-time V4 couples the energy-momentum tensor 
of matter to the Riemann space-time curvature. On the other hand, following 
Einstein, Hayashi and Shirafuji (1979) built up a teleparallel theory of gravity 
in curvature-free WeitzenbOck space-time A4, in which the energy-momentum 
tensor of  the matter couples to the torsion tensor of the space-time and the 
spin distribution of the matter is only reflected in the antisymmetry of the 
energy-momentum tensor. A more reasonable model should consider both 
the mass and spin of  matter as sources of  the curvature and torsion of  space- 
time, respectively, and formulate a theory of  gravity in Riemann-Cartan 
space-time U4, which is the so-called Einstein-Cartan theory (EC theory) 
(Hehl et al., 1976). 
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The Kaluza-Klein theory (KK theory) (Toms, 1984) was first put for- 
ward by Kaluza (1921) and Klein (1926) in the early twenties. Later, it 
was applied to the case of higher dimensional Riemann space. The higher 
dimensional KK theory in Weitzenb6ck space has also been formulated (You- 
lin, 1993). Next we establish the higher dimensional KK theory in Riemann-  
Caftan space. 

In this paper, we first give the general gravitational field equation and 
Dirac equation of  the matter field in higher dimensional EC theory. Then, 
as an example, we deduce the Einstein-like equation, Maxwell equation, and 
Dirac equation in four-dimensional (4D) space with a given metric by reducing 
the corresponding five-dimensional (5D) field equations. Finally, we discuss 
the gravitational spin-spin interaction induced by torsion. 

2. A C T I O N  

First, we give our conventions. Objects or quantities with (without) a 
caret refer to those of higher dimensional space (4D space-time) and objects 
or quantities with a tilde are those of  the Riemann space so as to distinguish 
them from those of  the Riemann-Cartan space; Greek letters Ix, v . . . .  (Latin 
letters A, B . . . .  ; M, N . . . .  ) are used for coordinate basis indices (horizontal 
lift basis indices; orthonormal basis indices). 

In order to set up theory of  gravity in n-dimensional (nD) Riemann-  
Caftan space U,,, the nD action of the theory should be given. For this, we 
first define the higher dimensional torsion tensor in the coordinate basis as 

- F(~], 12, ~ . . . .  = (0, 1, 2, 3, 5 . . . . .  n) (2.1) 

where ^ ~ F~, is the affine connection in Riemann-Cartan space. If the metricity 
condition V~i , ,  = 0 is assumed, we have 

^ 

f'~-o = r ~ - o -  g ~ k  (2.2) 

where i~-~ represents the corresponding Riemann connection and R0.~ k stands 
for the contortion tensor 

R~o ~: = -0~t~ ~ + 0~x~ - 0x0.~ (2.3) 

For the sake of convenience we introduce a modified torsion tensor 

=-- - 8~Qc. (2 .4 )  

where ~)0. = ~)~i0f. The higher dimensional Riemann-Cartan space curvature 
tensor in coordinate basis is given by 

= 20i~F0j ~ + 2Ft~,aF,~l ~ (2.5) 
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The scalar curvature/~ = R~" = R0.v ~ may be obtained by contraction of 
the Riemann-Cartan curvature tensor. Using (2.2) and (2.5), we can separate 
the scalar curvature into a Riemannian and a torsion part, 

k = ~ + 2 ( ~ R ~  °0") + R ¢ , ~ ' R f  ' - Re~Rf~  ¢' (2.6) 

The field Lagrangian density is given by 

(2.7) 

where k = 8'rrG, and G denotes the gravitational constant. Here we use units 
such that h = c = 1. 

To introduce a spinor in Riemann-Cartan space, it is necessary to choose 
at every point of  U,, an orthonormal basis. The corresponding n-bein eXt~ 
satisfies 

~¢~ = ~Mz~fi~t~,, /17/, ~ . . . .  (0, 1, 2, 3, 5 . . . . .  n) (2.8) 

where ¢IM~ = diag(+ 1, - 1, - 1 . . . . .  - 1) is the nD Lorentz metric. Just as 
in the Riemannian case, the spin connection may be written as 

1 f'~z = ~ ,~,~ro.(~)6~'~' (2.9) 

with 6 "~tg' = ¼[~,ta, @X,], where @M is the Dirac matrix in nD Lorentz space 
which satisfies 

~,M~,~ + ~,X,~,M = 2~1~, (2.10) 

Using (2.2), we can rewrite (2.9) as 

[~a = [~0. + /(~ (2.11) 

where RO~ - ~ " ~ "":' - v R ~ / t ~  • The spin covariant derivative, similar to the case of  
Riemann space, is defined by 

^ ^ 

{7gq, = (a0. + Fa)xI, = f a  ~ + gO~  (2.12) 

where ~ is a Dirac spinor in higher dimensional space. Let the matter 
Lagrangian density be given by 

1 i [ ~ g ~ , t  ~ _ ~r ~ / ~ ]  _ m~y ~ (2.13) ge,.  - -  

Using (2.11) and the formula 

~ ,~ .~e  = ~,[,t0el + ~z~.¢/~ + ~0o~z _ ~e~t~/~ (2.14) 
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where ~/I0-V,~l _= .~t0..~,.~,~] is totally antisymmetric with respect to Ix, v, o-, we 
can rewrite (2.13) in the form 

(2.15) 

^ 

where ~,,, is the matter Lagrangian density in Riemann space. The total action 
then is 

(2.16) 

3. F IELD EQUATIONS 

In the course of constructing KK theory in higher dimensional Riemann 
or Weitzenbrck space, we can directly reduce the action to a sum of actions 
of 4D gravity and the gauge field, for the curvature or torsion is formed by 
the given metric, while in higher dimensional EC theory, both the metric and 
torsion are independent field variables. In this case, we must first vary the 
action to obtain the field equations, then consider the possibility of their 
reduction. Performing the variation with respect to ~ ,  R~k, and + ,  we get 
the following results: 

(i) The first field equation is 

where 

G0.o + ?g,~ = k~'g~ (3.1) 

1 g~td~, ( 2 ~ . ~  + ~,~.~) _ 2~,~,~] (3.2) 
2 

labels the combination of the torsion terms with ;ill = ~/,k¢~., and 

^ 2 8 ( , ~ , , )  i 
~ ~  - v ~ 8 ~  - ~ [~ / (~#~)x~  - ~ ' . ~ , ~ ) x ~ ]  (3.3) 

denotes the metric energy-momentum tensor. Ga~ is Einstein tensor in Rie- 
mann space. Alternatively, we may introduce an asymmetric total energy- 
momentum tensor, so as to get the generalized Einstein equation in Riemann-  
Cartan space. However, it is easy to verify that the two kinds of equation 
are equivalent. 
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(ii) The second field equation is 

~ ' ~  = - k ~  

where 

(3.4) 

~z~; _ a(w/~,, ,)  _ 1 ik~7~/bt~Xl~ Z (3.5) 

is the spin angular momentum tensor of the matter field. It is totally antisym- 
metric. From (2.3) and (2.4) we know that / ( ~  = _~f~4 is also totally 
antisymmetric. Exploiting the second field equation (3.4), we can reduce the 
first field equation (3.1) to 

~ ^ * * .  
~;~ - Ta~;~Ta~ ~ - ~ d,;~Ta~T ~ : -k~;~ (3.6) 

(3.7) 

(iii) The Dirac field equation is 

I 
i~,~zV~ + ~. i /(~z~'l~xl~ - m ~  = 0 

4. F I V E - D I M E N S I O N A L  EC T H E O R Y  

In order to clarify how field equations in higher dimensional EC theory 
reduce to those of gravity and gauge fields in four-dimensional (4D) space- 
time and to reveal the spin-spin interaction induced by torsion explicitly, we 
consider the simplest 5D case. The 5D metric in coordinate basis may be 
taken as 

g'f~r'=( g~'~'-K~-A~A'-KA~, ---V~l~) , iX = (~, 5) (4.1) 

where A¢ may be identified with the electromagnetic potential and the constant 
K is introduced to ensure that KA~ is dimensionless. We choose the horizontal 
lift basis (HLB) 0"~ with A = (A, 5), which is convenient for calculation. Its 
components are given by 

~a : ~Ad.xP. ' ~5 = dx 5 + v,A~dx" (4.2) 

The basis vectors E,~ which are dual to f~ are 

eA = ( 0 i x  - -  K A I x 0 5 ) ~ ,  e5 = 05 (4.3) 

By this choice, the metric becomes diagonal 

g A ~ = ( O  8 -10) (4.4) 
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where gAB = g~8~28~. 
Because the HLB is anholonomic, we define the commutation coeffi- 

cients ~aB~t by 

[~,  ~e] = d , ~  (4.5) 

Just as in coordinate basis, the connection coefficients in HLB can be 
expressed as 

('aa~" = f',~ad - /(Bd,~, ( 4 . 6 )  

with the Riemann connection coefficients (Toms, 1984) 

1 

The curvature tensor in HLB is defined as (Choquet-Bruhat et al., 1977) 

Raa~ ° = e,~(Fa~) - ea(F,~t) + Fa;Fa~ - FaeF,i~t - C,~a Fe~ (4.8) 

Obviously, expression (2.6) also holds in HLB: 

/~ = ~ + 2(~i/(A ~A) + /C,~b~i/(~ ~t5 - /(~tsA/('~i t~b (4.9) 

2 
Using HLB, it is easy to prove R = /~  + ¼KZF~F~v; then the field Lagrangian 
density becomes (in coordinate basis) 

2o = R = f? + ~ K2F~F~v + 2 ~ 2 ~  ~ 

+ ~.~ia/~ s~; _ /~s/~/~j~i] (4.10) 

Here, we assume K 2 = 2k = 16"rrG, so as to make the second term on the 
right-hand side of (4.10) coincide with the Lagrangian density of electromag- 
netic field. 

In HLB the fiinfbein, like the metric, is simply block diagonal 

(eo O) e'U,~ = (4.11) 

The spin connection in HLB is given by 

F~i = f'.~ +/(,,i (4.12) 

where f'~ - ~ ~ ~ ̂  ^ ^ ~'~ - ~-e,~, ~'~(e~,~)o" is the Riemann spin connection; its components 
can be evaluated as (Macias and Dehnen, 1991) 
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( ' ) ' ~a = ['~ + ~ KeN~F¢. (rN5 ~ ,  ~S = -~ KeMgeffF~ ¢rMN (4.13) 

The spin-covariant derivatives in HLB are then defined by 

~rA~ = (eA + ['A)~ (4.14) 

while the Riemann spin-covariant derivatives are given by 

f a ~  = ~a~(O~ -- v,A~O5 + f" )qs, f s q  t = (05 + f's)q~ (4.15) 

Therefore, the Dirac Lagrangian density may be taken as 

1 ^ 
;~,,, = ~,,, + ~ i/(~t~;~l~kl+ (4.16) 

where 

(4.17) 

is the Dirac Lagrangian density in Riemann space. Hence the total action 
function of 5D EC theory is 

i5 = I dSx "/~3(2~c + f~'') (4.18) 

Performing the variation with respect to/('i,~ ~, we obtain the field equation 

~r¢~c, ~ = _ 1  ik~i;~¢,~l~ (4.19) 
4 

Using (2.3) and (2.4), we have 

1 ^ [( ~,;, = _ ~z~,£ = -4 ik~i.~l~f, iq~r (4.20) 

Notice that now both the modified torsion tensor ]'0.v~, and the contortion 
tensor k ¢~i' are totally antisymmetric. 

Because the fifth coordinate is usually assumed periodic, we choose, as 
in 5D Riemann space, the Dirac spinor ~ (x  ~, r s) = exp(ixS/L)t~, to guarantee 
that the EC theory is covariant with respect to U(I). Thus (4.20) may be 
expressed by means of a spinor ~ in 4D space-time: 

1 ~t,)~ = _ ]-0.~i = ~ ik~.~[0.~/.It~ (4.21) 
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To derive the Einstein-like equation of 5D EC theory, we may take the 
orthonormal ftinfbein OM0. as basic field variables, which can be expressed 
explicitly as 

e'Vto.̂" = (em~ Av ~ (4.22) 

Varying ]5 with respect to em~ and A~, we get the following results: 
The Einstein-like equation: 

1 

+l~ 
(4.23) 

The Maxwell equation: 

~ '~f g~' = -e~3,~'~ - ~',[½i(16.rrG)ln~o-~2tst~] (4.24) 

We can also vary ]5 with respect to ~, and obtain the following: 
The Dirac equation: 

l ^ 
i'ct¢'~;~ + -~ iKr~,i')l#c'~'Id~ - m~ = 0 (4.25) 

Using (4.21), we can rewrite (4.25) as 

1 1 i'y~(O v. - ieA v. + Fv.)t~ + ~ i( 16arG)l/2Fv.~,crV'~"¢sd¢ - -£ ~lst~ - mt~ 

3 
- 3'rrG(~3,s3,~)',/5~/g+ - ~ 'rrG(~/tS~l~)~/tS~vl~ = 0 (4.26) 

where e = ~ L  is the electron's charge. 
It can be seen that, in contrast with the Einstein equation in 5D Riemann 

space (Macias and Dehnen, 1991), the Einstein-like equation (4.23) has two 
extra terms. The first of them exists in the 4D EC theory already, while the 
last one is specific to the 5D case. Both of them may be regarded as additional 
effective energy-momentum tensors arising from spin-spin interaction 
induced by torsion. The analogous terms also appear in the Dirac equation 
(4.26). But the Maxwell equation (4.24) has the same form as in the Rieman- 
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nian case. This reflects the fact that there is no coupling between torsion and 
electromagnetic fields. 

Just as in the case of 5D Riemann space, there is an additional mass 
term L-1'),5~ in the Dirac equation (4.26) of 5D Riemann-Cartan space. The 
large magnitude of the additional term [L -l = e / (16"rrG)  ~/2 ~- 2.6 × 10 -7 g] 
yields no correspondence between Dirac fields and observed particles. There 
are two possible approaches to obviate this problem. First, we may perform 
a spinor transformation (Vladimirov, 1987), ~ = Sty' = exp(0~5)O ', to diago- 
nalize the mass term by appropriate choice of 0 and get the total mass m '  

= (L -2 + m2) ~/2, which consists of two parts: the mass contribution from 
the electrical charge and the prime mass m. In order to match the m' with 
the observed electron mass, for example, the prime mass m must be taken 
to be imaginary. Macias and Dehnen (1992) have proposed another approach 
to solving the mass problem by introducing a scalar field into the metric of 
the Kaluza-Klein theory of 5D Riemann space. In this approach the coupling 
term of scalar and Dirac fields can be interpreted as the mass term, and a 
nontrivial ground state for the scalar field exists. Then the observed electron 
mass can be obtained by appropriate choice of the ground state of the scalar 
field. It can be easily seen that the second approach should also be applicable 
for the 5D Riemann-Cartan case. 

5. THE SPIN-SPIN INTERACTION IN 5D EC THEORY 

From the field equation (4.20), we can see that the term which contains 
the contortion tensor in the Dirac equation (4.25) represents the spin-spin 
interaction induced by torsion. To single out this interaction, we may ignore 

the Riemann connection (f~,) and electromagnetic potential (A~) temporarily. 
Thus the Dirac equation (4.25) can be simplified as 

l ^ 

i~/~za~ + ~ iKI~.~I¢/['~I~'~I ~ - mO = 0 (5.1) 

According to the discussion at the end of the last section, here m should be 
regarded as the total mass m'. 

^ 

For simplicity, suppose that the contortion t e n s o r  KI,~I~ 1 can be regarded 
as the background torsion generated by the spin-½ particles, which is proposed 
as an electron distribution of number density n and spin in the up (+z)  
direction. The background electron wave function in terms of which the 
/~tal~l is formed may be taken as u = u(O)e il'°t, u ( 0 )  = x/~(l 0 0 0)  T. Put a 
test electron at rest in the background; it will suffer an action from the 
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background torsion. Its wave function can be set as ~ = ~(O)e iE'. Then the 
Dirac equation becomes 

3 
"y°mt~ + (3arG)(~/53,~'u)3,s3,~ + ~ 7rG(~'y[sc,13iu)3~15c~131~ = Et~ (5.2) 

In the aforementioned case, it is reasonable to use the constant Dirac 
matrices 

(0' 0) ( ) (0 :) 0 o i  "Y5 I (5.3) 'Y0 = _ , "Yi = _O.i  , = - - I  

satisfying (2. I0). Then we get from (5.2) the eigenenergy for the test particle 
(in cgs units) 

(3  h2 8 ch2n 
E =  mc 2 +- \ c2 ~c 2 )n  = mc 2 +_ 3c ~ (5.4) 

Notice that in (5.2), the nonlinear term (3"rrG)(K~/5~'~u)~/5~/~t0 which 
exists in 4D EC theory already stands for the spin-spin pseudovector direct 
interaction term (Hehl and Datta, 1971), while the second term3"rrG(~',/[s~lu) • 
.,/t5,~l~, induced due to the additional dimension of space, represents the 
spin-spin pseudotensor direct interaction term, which has an opposed effect 
on energy to that of the pseudovector one. 

On the right-hand side of (5.4), the positive sign corresponds to test 
particle spin in the up direction, aligned with the background, and the negative 
sign to test particle spin opposed to the background. The same result is 
obtained for positrons. Thus, we may conclude that the gravitational spin-spin 
interaction is repulsive for Dirac particles with aligned spins and attractive 
for opposed spins. Because of the extremely small order of magnitude (8~rGh2/ 
3c 2 ~ 10 -82 erg.cm3), the spin-spin interaction can be comparable to the 
mass term whenever the number density n = rn/k2h = mc4/8arGh ~ 10 75 
cm -3 is achieved; therefore, it might have an effect only on the evolution of 
the early universe (Kerlick, 1975; Hehl et al., 1976). 
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